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Abstract
Deep Learning (DL) has achieved the state of the art results on many machine learning
tasks starting from image classification, video processing to natural language under-
standing and speech recognition. The input data to the model in all of these tasks lie in
the Euclidean space. However, there are many applications where the input data is not
present in Euclidean space and are represented using graphs. For example, in chem-
istry, molecules are represented as graphs. A citation network can also be modelled
as a graph where the nodes represent papers and an edge between the nodes indicate
citation relationship. Graph Neural Networks (GNNs), i.e., Geometric Deep Learning
concerns generalized convolution methods that can work on a non-linear structure like
graphs. GNNs can also be applied on images where the pixels (nodes) are connected
by neighbouring pixels.
GNNs are classified into spectral and spatial approaches depending on how the con-
volutions are defined. In this thesis, we have examined the performance of GNNs and
SchNet (a continuous filter convolution) model on OMDB dataset. The dataset con-
tains the band gap values of 12,500 3D organic molecular crystals calculated using
Density Functional Theory (DFT) and the task is to predict the bandgap value given the
structure of the molecule. Among all of the models tested, we found that our slightly
modified version of SchNet achieved the Mean Absolute Error (MAE) of 0.28eV which
is better than the state of the art. In this SchNet model, we also identified the atoms
that are significant in contributing to the bandgap value of the molecule. Finally, we
built an ensemble of SchNet models which attained a slightly lower MAE of 0.268eV.
Although the GNN approaches that were tried did not improve the estimation accu-
racy, they still hold a promise in terms of improved explainability of results due to the
graph-based nature of molecules.
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1 Introduction
1.1 Introduction
In recent years, we observed that the application of Deep Learning (DL) has expanded
to many fields. The reason is that DL models can learn complex relationships between
a large number of attributes in successfully classifying data. Chemistry is one of the
new fields where DL is being used for many sub-applications like structure prediction,
material design, quantum chemistry and property prediction as explained in [7]. The
specific problem which this thesis will be focused on is predicting the property of a
crystalline material. Many of the properties of a crystalline material can be derived
from its electronic structure. Learning this relationship is very important as it will en-
able us to combine the materials appropriately to obtain the desired output material.
The amount of data available with respect to these materials increased significantly in
recent years. So DL models can be quite promising in achieving better results in this
specific task. [8] is one of the earlier machine learning methods which was quite suc-
cessful in this task. However, this model computes representations of atoms which are
rotation, translation and permutation invariant (which are necessary for successful iden-
tification) manually. The approach in [9] learns the representations automatically from
the input data. Specifically, this paper employed "Graph Neural Networks" (GNNs) ap-
proach which can extract features for an atom based on its neighbourhood. But, all of
these methods used the QM9 dataset which has molecules containing a small number
of atoms. The Organic Materials Database (OMDB) is a complex dataset than QM9
containing a large number of atoms. [6] used an ensemble of ’SchNet’ from [10] and
"Kernel Ridge Regression with the Smooth Overlap of Atomic Positions (SOAP) ker-
nel" methods to achieve the state of the art results on this dataset. In this thesis, different
possible input representations and architectures of multiple GNNs currently available
will be explored on OMDB dataset. The final goal is to find the model which produce
the best results and also has the lowest computational complexity at the same time.

Recently, Convolution Neural Networks (CNN), a class of deep learning models have
achieved the state of the art results in object classification tasks. They achieve this by
extracting higher-level features automatically from the pixels that are necessary to iden-
tify the required objects in images. Deeper CNN architectures [11] and [7] were able
to achieve state of the art results on the difficult ImageNet classification benchmark.
However, CNNs can be applied directly on images defined in Euclidean space but gen-
eralize poorly on non-linear data structure like graphs. Graph Neural Networks, i.e.,
Geometric Deep learning (coined by Michael Bronstein in [12]) concerns techniques
designed to generalize the convolutions to work on non-Euclidean domains. These
techniques can be classified into Spectral and Spatial approaches which mainly differ
in the way how convolutions are defined. We used the PyTorch Geometric Library [13]
to implement GNNs in this thesis.
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1.1.1 Spectral Graph Approaches
In Spectral approaches [14], convolutions are defined in the frequency domain as a
filter on the spectral components of the graph laplacian. The first Graph CNN based
on this theory is presented in [14]. This model generalized poorly and over-fitted the
input graph structure seen during training. The reason is that the filters learnt in the
convolution layer are dependent on the eigenvalues of the graph. Better convolution
kernels were later introduced in ([15] and [16]) to alleviate this problem. However,
these filters were still domain dependent. The current state of the art method in this
approach is GraphConvNets (GCN by [17]) which is explained in detail in 3.2.2. This
method simplified the Chebyshev polynomial (used as a kernel) to order 2 since it
minimized the over-fitting issue.

1.1.2 Spatial Graph Approaches
Spatial graph neural networks define convolutions directly in the Euclidean domain.
These models can capture the local position relations between the nodes and gener-
alize better to graphs of different shapes. So these models can be quite effective in
predicting the property of crystalline material based on the underlying structure of it.
GeodesicCNN [18] is one of the initial approaches which finds local polar coordinates
around a point and Gaussian kernels (with learnable weights) is computed with respect
to each of the bins for these local coordinates. [19] proposed using anisotropic heat ker-
nels which produced better results than the existing spatial approaches on benchmark
datasets. Monet [20] also used the Gaussian kernels but with learnable mean vector and
covariance matrix. SplineCNN [21], the current state of the art approach in many ap-
plications uses B-spline convolution kernel. A more recent approach Graph Attention
Networks in [22] added a self-attention mechanism to the existing convolution kernels
and this approach matched the state-of-the-art performance while being computation-
ally efficient. However, this approach is for node-classification and has to be extended
to graph classification.

1.1.3 Graph Neural Networks in Chemistry
In Chemistry, [23] is one of the earliest papers which proposed CNN directly on graph
structures (molecules) for learning molecular fingerprints. Approaches before this used
hash function to compute circular fingerprint values of each atom whereas the approach
in [23] estimates the hash function using a single layer neural network. [24] defined
graph convolutions directly on molecule features such as atoms, bond order and didn’t
use any molecular fingerprints. However, this approach was tested only on small size
molecule dataset. [22] defined Message Passing Framework (MPNN) for graphs which
can describe many of the popular GNNs and the small variations made to this proposed
framework demonstrated very good performance on the QM9 dataset. [22] also men-
tioned that these methods have to be tested on molecular datasets that are much more
complex than QM9. [10] proposed continuous filter convolutional layers in SchNet
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neural network which can work on the non-grid structure and achieved state of the art
results on ’QM9’ dataset. [6] trained this SchNet model on OMDB dataset and tested
on "Crystallography Open Database (COD)" dataset. This model has achieved the best
results so far on this dataset.

1.1.4 Pooling methods
Designing a pooling strategy is also an active area of research in GNNs. An effective
pooling strategy outputs a representation that has low computational complexity, per-
mutation invariant while retaining the useful information. The primitive and effective
way of pooling is the mean/max/sum pooling of the graph. The disadvantage of this
simple technique is that the output representation has a fixed size irrespective of the
size of the graph. Ideally, the pooled output should scale with the size of the input rep-
resentation. Set2Set pooling [25] generates pooled output that increases with the input
size. A detailed description of this method is presented in Section 3.2.4. [16] proposed
a different approach where the graphs are coarsened into multiple levels using the Gra-
clus algorithm ([26]). Then a binary search tree is constructed where the ordering of the
nodes at lower levels is done based on the arbitrary order of nodes chosen at the coars-
est level. This preserves the regular ordering among the nodes at the initial level. Then
max-pooling is performed on this reordered graph which is more efficient than pooling
the original graph. All of these approaches discussed so far perform pooling based on
node features but does not take the graph structure into consideration. The SAG pool-
ing method considers both node features and topological information of the graph and
performs pooling using the self-attention method. More details on this method can be
found in Section 3.2.5.

1.2 Research Question
The main aim of this study is to examine the performance of the state of the art GNN
approaches on complex molecular datasets. Particularly, we will investigate the perfor-
mance of different Graph Neural Network models on OMDB dataset. We also attempt
to modify the SchNet architecture in the process of improving the performance while
making sure that the computational complexity is not increased. The specific questions
that will be answered are as follows.

• Experimenting with different architectures, parameter values of the SchNet model
( which is the baseline method) and finding the model with the lowest MAE.

• Experimenting with the state of the art methods in GNNs (both spectral and spa-
tial domains) and finding the model with the lowest MAE.

• Experimenting with different pooling methods that are currently available for
GNNS and finding the pooling method that gives the best results.
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• Finding the model or an ensemble of models with the best performance while
being computationally optimal.

• Interpreting the results of the best model and identifying the atoms that are sig-
nificant in contributing to the bandgap value of the molecule.

1.3 Outline
The rest of the thesis is structured as follows.

• Theoretical background: This section provides a detailed description of the
Spectral Graph theory necessary to understand the Spectral Graph Neural Net-
works (which is a relatively new field). Also, a brief introduction to the Convo-
lution Neural Networks (CNNs) is provided.

• Methodology: This section describes the GNN methods used in this thesis and
also the OMDB dataset.

• Experiments and Results: In this section, the experimental setup as well as the
results of the experiments conducted will be described in detail.

• Discussion: In this final section, an attempt is made to answer the research ques-
tions posed earlier and also an interpretation of the results is performed along
with a discussion of possible directions for future work.
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2 Theoretical Background
In this chapter, we provide a brief background on CNNs that achieved the state of the
art results on image classification tasks. CNNs are introduced by LeCun et al.[27]
that operate on inputs in the Euclidean domain. The Neocognitron architecture pro-
posed by Fukushima et al. [28] has a similar architecture of CNN but it is trained
using a layer-wise unsupervised clustering algorithm. Understanding the workings of
CNN will provide a basic foundation for comprehending the working of GNNs on non-
Euclidean domains. Also, we provide brief information on spectral graph theory which
is necessary to understand the working principles of spectral graph neural networks.

2.1 Convolution Neural Networks (CNNs)
A CNN consists of a stack of layers that takes the input signal or image (2-dimensional
grid as input) and produces an output (probability score for each class label) through
a sequence of steps. Figure 1 shows an example of a CNN model that is used for
recognizing the digits (0-9) when an image containing a digit is presented as input. A
typical CNN contains mainly three components which are described in detail below.
The mathematical expressions used in this subsection are based on [4].

Figure 1: An example of a CNN model from [1]

2.1.1 Convolution
This is the most important block in a CNN where the feature extraction from input hap-
pens through convolution operation. The parameters of each convolutional layer are a
set of learnable filters that operate on a small region (also known as receptive field).
Each 3-D filter will have chosen height and width (generally less than that of image
height and width) but same depth as that of the image. During the forward propagation,
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the filter is slid across the height and width of the image and a dot product is computed
between the values of the filter and the pixels present in the window of the image. The
output of the filter is a 2-dimensional grid known as the activation map. In this way,
the network learns filters that activate when they identify a particular feature at some
arbitrary position in the input. There will be a stack of these filters placed along the
depth dimension in each layer and the activation maps produced constitute the output
volume.
Let the convolution layer be denoted by g = CΓ(f) operating on n-dimensional in-
put f(x) = ( f1(x), . . . , fn(x)) using a set of filters Γ =

(
γl,l′
)
, l = 1, . . . ,n denotes n-

dimensional input, l′ = 1, . . . denotes the q-dimensional output and ξ denotes the non-
linear activation function, the output of the convolution layer is computed as shown
below.

gl′(x) = ξ

(
n

∑
l=1

(
fl ∗ γl,l′

)
(x)

)
Some of the key features of CNNs are "Sparse Connectivity" and "Parameter sharing".

Local (Sparse) Connectivity
Multi-Layer Perceptron models (MLP) use matrix multiplication in each layer where
the interaction between each input and output has a separate parameter. However,
CNNs typically have sparse interactions. This is achieved by having kernel/filter size
less than the input size. For example, when the input is an image, it might have a large
number of pixels, but the key features such as edges might be present in a relatively
small number of pixels. Hence a small-sized kernel is enough to recognize the features
in the images. This also greatly reduces the number of parameters to store in the mem-
ory and improves the statistical efficiency of the model as well.

Weight/Parameter sharing
If the parameters are used more than once in the model, it is called weight sharing.
Parameter sharing reduces the total number of parameters in the CNN architecture. In-
tuitively, in a CNN, it also makes sense to share the filter (parameters) across the image
as the key features like edges can be present at any region in the image and the same
kernel can be used to identify such locations. Hence parameter sharing causes the lay-
ers to have translation invariance property. An example of the convolution with a 2-D
image is shown in Figure 2.

2.1.2 Pooling
Generally, a pooling layer will be present in between successive convolution layers.
The purpose of pooling layers is to reduce the spatial size of the representation, reduce
the number of parameters and also minimize over-fitting. Pooling operation also pro-
vides translation invariance to the CNN. There are many non-linear functions that can
be used for pooling (like max, average). Among them, the most commonly used is Max
pooling.
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Figure 2: An example of convolution in CNN taken from [2]

The pooling operation is applied independently along each depth of the input. An ex-
ample of a pooling layer shown in Figure 3 where a filter of size 2×2 with a stride of
2 reduces each depth by half, ignoring 75% of the activations.

General pooling layer
A generic pooling layer can be defined as follows

gl′(x) = P
({

fl
(
x′
)

: x′ ∈N (x)
})

, l = 1, . . . ,n

where N (x) is neighbourhood around x and P is any permutation-invariant function
(average or max pooling).

2.1.3 Activation layer
The output of a convolution layer is sent to activation layer before pooling is applied.
In this section, we will describe some of the most commonly used activation functions.
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Figure 3: The image is taken from [3]. In the left pane, the input volume of size
224×224×224 is downsampled (pooled) into output volume 112×112×64 using a
filter of size 2× 2 with stride 2. We can see that the depth of the image remains the
same in both input and output. In the right pane, Max pooling on a single depth of an
image is shown. Each output value is the maximum taken over 2×2 square

Rectified Linear Unit (ReLU)
The ReLU function on an input x is defined as shown below

ReLU(x) = max(0,x)

LeakyReLU is slightly different from ReLU which has a small, positive gradient when
the unit is inactive.

LeakyReLU(x) =
{

x if x > 0
0.01x otherwise

Sigmoid function

Sigmoid(x) =
1

1+ e−x =
ex

ex +1

2.1.4 Fully Connected layer (MLP)
The final layers in a CNN are usually fully connected. These layers together perform
the complex reasoning (based on the features extracted from the convolution layers)
in successfully predicting the correct output value. The neurons in these layers are
connected to all of the activations in the previous layer. Hence the activation of neurons
in this layer is computed with a matrix multiplication before adding a bias value.

2.2 Spectral Graph Theory
In this section, we will describe the important concepts in Fourier analysis and how
these ideas can be utilized to build graph convolution models in the spectral domain.
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Also, the relation between the filtering in the spectral domain and the vertex domain
(spatial domain) is derived. [4] provided a very nice introduction on the spectral graph
theory and this section is a revised version of the same.

2.2.1 Graph representation and Basic notations

Let G = (V ,E ,W) denote an undirected connected graph with a set (denoted by V )
of n vertices, set of edges E and a weighted adjacency matrix W. Each entry in the
weight matrix wi j denotes the weight of the edge between the nodes i and j. If there
is no edge between the nodes, the corresponding entry wi j is 0. The weight matrix
is called Adjacency matrix (denoted by A) if the entry wi j = 1 when there is an edge
present between the nodes i ,j and 0 otherwise.
In the scenarios where the weight matrix is not provided upfront, one possible approach
is to define the edge weight between any two vertices i and j using a Gaussian weighting
function as shown below

Wi j =

{
exp
(
− |dist(i, j)]2

2θ2

)
if dist(i, j)≤K

0 otherwise

Here θ and K are chosen parameters. dist(i, j) represent the distance between vertices
i and j. The distance value can be either Euclidean distance between the feature vectors
of i and j or the physical distance between i and j. There are various ways in which the
graphs (weighted adjacency matrix) can be constructed and details about these methods
can be found in [29].
Let f : V → R be a vertex function defined on the vertices of the graph and is repre-
sented by a vector f ∈ RN where the ith component of the vector represents the value
of f at ith vertex in V . An example of a signal (vertex function) defined on a graph is
shown in Figure 4.

2.2.2 Graph Laplacian

The non-normalized graph laplacian is defined as ∆ = D−W. Here D = diag
(
∑ j Wi j

)
is the degree matrix and W is the weight matrix. For any arbitrary signal f ∈ RN , the
graph laplacian can be seen as a difference operator as shown below

(∆ f )(i) = ∑
j∈Ni

Wi j[ f (i)− f ( j)]

This equation can be derived easily from the definition of ∆ and f . Here Ni is the im-
mediate neighbours (adjacent vertices) of vertetx i.
Since the graph laplacian is a real symmetric matrix (un-directed graph), there exists a
set of orthogonal eigenvectors denoted by Φ = (φ1, . . . ,φn)

1. These eigenvectors have
corresponding non-negative, real eigenvalues λ1, . . . ,λn which are the solutions of the
equation ∆φi = λiφi for i = 1,2, . . . ,N. Zero is the minimum eigenvalue with frequency
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Figure 4: An example of a signal defined on vertices of a graph from [4]

equal to the number of connected components of the graph [30]. Hence the range of
the eigenvalues will be 0≤ λ1 ≤ λ2 ≤ . . .≤ λN := λmax.

Normalized graph laplacian In normalized graph laplacian, each weight wi j is
normalized by value of 1√

did j
where di, d j represents the degree of vertex i and j re-

spectively. The normalized graph laplacian denoted by ∆̃ is defined as follows

∆̃ = D−1/2
∆D−1/2 = I−D−1/2WD−1/2

The eigenvalues of the normalized graph laplacian will be in the range 0 ≤ λ̃1 ≤ λ̃2 ≤
. . .≤ λ̃max ≤ 2. λ̃ = 2 when G is bipartite; in a bipartite graph, the set of vertices in V
can be divided into two disjoint subsets such that every edge e ∈E connects one vertex
from set 1 to the vertex from set 2. In general, normalized graph laplacian eigenvectors
are used as filtering basis when defining graph convolutions as their eigenvalues are
constrained to lie in the interval [0,2].

Eigendecomposition of ∆ or ∆̃ : As both ∆ or ∆̃ are symmetric and positive semi-
definite matrices, they have an eigendecomposition ∆ = Φ

∧
ΦT where diagonal matrix∧

= diag(λ1 . . .λN)

2.2.3 Fourier Transform
The Fourier transform that decomposes a signal into the frequency components is de-
fined as follows

f̂ (ξ) :=< f ,e2πiξt >=
∫
R

f (t)e−2πiξtdt
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From the equation, we can see that Fourier transform is the expansion of signal (in time
domain) in terms of complex exponential values.

Graph Fourier Transform : Similarly, the graph Fourier transform f̂ of function
f ∈ RN on the vertices of G can be defined as the expansion of f in terms of the eigen-
vectors of the graph Laplacian as shown below:

f̂ (λl) :=< f,φl >=
N

∑
i=1

f (i)φ∗l (i)

Rewriting this in terms of matrix representation

f̂ = Φ
T f

Inverse Graph Fourier Transform : The inverse graph Fourier is given by the
following equation

f (i) =
N

∑
i=1

f̂ (λi)φl(i)

and the equivalent matrix vector notation is

f = Φf̂

Properties of the graph with respect to the eigenvalues : The eigenvalues can be in-
terpreted as frequencies in classical Fourier analysis. For smaller frequency values, the
corresponding eigenfunctions are smooth, slowly oscillating functions. In case of high
frequency values, the respective eigenfunctions change more swiftly across the graph.
Similarly, in case of graphs, the graph laplacian eigenvalues are equivalent to frequency
of a signal. The eigenvectors of the graph laplacian associated with small eigenvalues
(frequencies) vary slowly across the graph; if a pair of vertices are connected by edge
with large weight, the eigenvalues at these vertices will be almost similar. For ex-
ample, the laplacian eigenvector (Φ1) corresponding to the 0 eigenvalue has constant
value (equal to 1/

√
N) for the entire graph. The eigenvectors corresponding to larger

eigenvalues oscillate more swiftly and are likely to have different values at vertices
connected by an edge having large weight.

2.2.4 Signal smoothness
In this section, we describe the smoothness property of signal with respect to the intrin-
sic structural information (W ) of the graph.

Edge derivative: The edge derivative of signal f with respect to edge e = (i,j) is

∂f
∂e

∣∣∣∣
i
:=
√

Wi j[ f ( j)− f (i)]
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Graph gradient: The graph gradient of f with respect to vertex i is the vector

∇if :=

[{
∂f
∂e

∣∣∣∣
i

}
e∈E s.t e=(i, j) for some j∈V

]

Using the above definitions, we can now define the local smoothness of f at vertex i as
follows

‖∇if‖2 : =

 ∑
e∈E s.t e=(i, j) for some j∈V

(
∂f
∂e
|
)2
 1

2

=

[
∑

j∈Ni

Wi j[ f ( j)− f (i)]2
] 1

2

Defining global smoothness of f (known as discrete p-Dirichlet form) using the defini-
tion of local smoothness (defined around a vertex) as follows

Sp(f) :=
1
p ∑

i∈V
‖∇if‖p

2 =
1
p ∑

i∈V

[
∑

j∈Ni

Wi j[ f ( j)− f (i)]2
] p

2

When p=1,S1(f) is the total variation of the signal with respect to the graph. For p=2,
the equation becomes

S2(f) =
1
2 ∑

i∈V
‖∇if|p2 =

1
2 ∑

i∈V
∑

j∈Ni

Wi j[ f ( j)− f (i)]2 = ∑
i, j∈E

Wi j[ f ( j)− f (i)]2 = f>∆f

(1)
S2(f) is also called graph Laplacian quadratic form [31].
The Courant-Fischer theorem [32] states that the eigenvalues and eigenvectors can be
found iteratively using the Rayleigh quotient as follows

λ1 = min
f∈RN

{
f>∆f

}
‖f‖2=1

λl = min
f∈RN

{
f>∆f

}
, l = 2,3, . . . ,N

‖f‖2=1

f⊥ Span(φ1, . . . ,φN)

(2)

Here the eigenvector φl is the solution to the lth minimization problem. From equa-
tion 1 and 2, it is clear that the eigenvectors of smaller eigenvalues vary smoothly
across the graph. Hence the global smoothness value of the graph is kept as minimal as
possible for smaller eigenvalues.
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2.2.5 Filtering
In this section, we will describe the frequency filtering on signals in the frequency do-
main (converted using Fourier transform) and later extend this concept to graphs. Also,
the localized filtering in the spatial domain is discussed.

Frequency filtering for signals
In classical signal processing, frequency filtering is performed by converting the signal
into the frequency domain using Fourier transform, then amplifying or attenuating cer-
tain frequencies and finally converting the signal back to the time domain using inverse
Fourier transform. The filtering of a signal in the frequency domain is shown below.

f̂out(ξ) = f̂in(ξ)ĥ(ξ)

where ĥ(ξ) is the filter transfer function. The inverse Fourier transform of f̂out(ξ) is
equivalent to convolution in time domain as shown below.

fout(t) =
∫
R

f̂in(ξ)ĥ(ξ)e2πiξtdξ

=
∫
R

fin(τ)h(t− τ)dτ := ( fin ∗h)(t)

Spectral filtering of graphs We can extend the signal filtering definition to filtering in
graphs as follows

f̂out(λl) = f̂in(λl)ĥin(λl) (3)

where λl corresponds to the eigenvalue of the graph laplacian ∆. Taking an inverse
Fourier transform of this equation will result in fout(i) in spatial domain as shown

fout(i) =
N

∑
l=1

f̂in (λl) ĥ(λl)φl(i) (4)

In matrix form, the equations 3 and 4 can be written as fout = ĥ(∆) fin where

ĥ(∆) := Φ

 ĥ(λ1) · · · 0
... . . . ...
0 · · · ĥ(λN)

Φ
>

Filtering in the Spatial Domain
The final output fout(i) at vertex i is linear combination of the input signal values at
vertices within K-hop local neighbourhood of i.

fout(i) = bi,i fin(i)+ ∑
j∈N (i,K)

bi, j fin( j) for some constants
{

bi, j
}

i, j∈V

Relation between filtering in graph spectral domain and vertex domain
When the frequency filter is a K order polynomial ĥ(λl) =
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∑
K
k=0 akλk

l for some constants {ak}k=0,1,...,K , the equation 4 becomes

fout(i) =
N

∑
l=1

f̂in (λl) ĥ(λl)φl(i)

=
N

∑
j=1

fin( j)
K

∑
k=0

ak

N

∑
l=1

λ
k
l φ
∗
l ( j)φl(i)

=
N

∑
j=1

fin( j)
K

∑
k=0

ak

(
∆

k
)

i, j

Since
(
∆k)

i, j = 0 when the shortest path between the vertices i and j is greater than k,
the above equations becomes

fout(i) = bi,i fin(i)+ ∑
j∈N (i,K)

bi, j fin( j) for some constants
{

bi, j
}

i, j∈V (5)

We can clearly see that the filtered signal at vertex i ( fout(i)) is a linear combination of
the signal values defined at vertices within a K-hop local neighborhood of vertex i.

2.2.6 Graph Convolution
The graph convolution in terms of graph laplacian eigenvectors is defined as

( f ∗h)(i) :=
N

∑
l=1

f̂ (λl) ĥ(λl)φl(i)

Rewriting the same in matrix notation

f∗h = Φdiag
(
ĥ(λ1) , . . . , ĥ(λN)

)
Φ
>f = ĥ(∆)f
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3 Methodology
3.1 OMDB-GAP1 dataset
Bandgap refers to the energy difference between the top of the valence bond and the
bottom of the conduction band in a material. It is a characteristic of the material and
combining the design of a material with the optimal bandgap value can lead us to find-
ing new electronic devices. The dataset [5] contains the band gap values of 12500
3D organic molecular crystals. Among all of the materials in OMDB, only the ma-
terials with a calculated magnetic moment of less than 10−4 micros were considered
in this dataset. More information on this dataset can be found in [33]. The struc-
tural information of the molecules is taken from the Crystallographic Open Database
(COD) and the bandgap values were calculated in the DFT framework by applying the
Vienna Ab initio Simulation Package (VASP). The dataset can be downloaded from
"https://omdb.mathub. io/dataset".
The significance of OMDB-GAP1 dataset is that it has more complex molecules than
the existing popular molecular datasets. Table 1 contains the statistics of the commonly
used molecular datasets. N̄ refers to the average number of atoms in a molecule. Con-
sistency means whether all molecules come from identical computational setup (’Y’
indicates yes and ’N’ indicates No). Size indicates the size of the dataset.

Table 1: Statistics of common molecular datasets

Name Size Type N̄ Consistent
QM9 133885 Organic molecules 18 Y
Materials Project 53340 Crystals 27 N
OMDB-GAP1 12500 Organic crystals 82 Y

The dataset comprises 65 atomic elements with Uranium being the heaviest and
spans 69 space groups. Figure 5 (a) shows the distribution of the dataset. It follows
Wigner-Dyson distribution: x4.61e−0.28x2

. The mean, median and standard deviation of
the dataset are 3.05, 2.96 and 1.03 respectively. Figure 5 (b) shows the most common
space groups and Figure 5 (c) shows the most common atomic elements excluding
Carbon (C) and Hydrogen (H) in the dataset.

3.2 Methods

3.2.1 SchNet
Schütt et al. [20] initially proposed DTNN which used many-body Hamiltonian method
to model the interaction between atoms. They showed that combining this with deep
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Figure 5: Statistics of OMDB-GAP1 dataset from [5]

tensor networks can achieve chemical accuracy on common datasets such as QM9.
However, this method does not employ the continuous filter convolution to model the
interaction between the atoms. In order to predict molecular properties such as poten-
tial energy or forces, minor changes in atomic positions are to be captured which is
possible only through continuous convolution kernel. Figure 6 shows the drawback of
the discrete filter which can be handled using continuous filter convolutions. In the left

Figure 6: Discrete vs Continuous filter
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sub-figure, we can see that the discrete filter is not able to identify the slight variations
in the atomic positions and predicts similar output for all of these minor variations.
Hence this resulted in discontinuities in the predicted energy values (can be seen in
the bottom left). The continuous filter can capture these variations (top right) and this
resulted in smoother energy predictions (bottom right).

Architecture
SchNet is mainly designed to model the molecular energies and forces of molecules.
However, it can also be used for predicting other properties of molecules (bandgap in
our case). SchNet follows the fundamental laws of physics by learning representations
that are rotational, translational invariant in addition to being invariant with respect to
the indexing of the atoms. The overall architecture of the SchNet is shown in Figure
7 and a detailed description of the individual components is provided in the Section
3.2.1.

Figure 7: SchNet architecture

Components
1. Atomic embeddings
A set of n atoms that constitute the molecule along with their corresponding nuclear
charges (Z =(Z1, . . . ,Zn)) and positions (R=(r1, . . .rn)) is enough to describe a molecule.
The atoms in the SchNet model is represented by a vector of features X l =

(
xl

1, . . .x
l
n
)

where xl
i ∈ RF . Here F , n, l represents the number of feature maps, number of atoms

and the current layer in the model respectively. Atoms represented using an embedding
dependent on it’s type Zi is fed as input to the model.

x0
i = aZi
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These embeddings are initialized randomly and updated during the training process.

2. Atom-wise layers
From Figure 7, we can see that the atom-wise layers occur at multiple places in the
network. These layers are applied to each of the atomic representations (xl

i) separately
as follows:

xl+1
i =W lxl

i +bl

Here W l is the weight matrix which is common to all of the atoms in layer l. Since the
weights are shared among all of the atoms, it is clear that the architecture is indepen-
dent of the number of atoms present in the molecule.

3. Interaction blocks
An interaction block is the place where the convolutions are defined on the atoms. In
convolution neural networks (CNN) [27], the convolutions are defined on pixels in a
3-dimensional grid. However, this is not possible in case of molecules as the atoms
are located at arbitrary positions in space. Hence a new type of convolution called
continuous filter convolution (cfconv) is defined as follows.

xl+1
i =

(
X l ∗W l

)
i
=

natoms

∑
j=0

xl
j ◦W l (r j− ri

)
Here ’i’ is the atom for which convolution is defined, X l is the atomic representation,
j corresponds to the neighbouring atoms and W l is the filter generating network de-
scribed in the subsequent section. From the interaction block (middle in Figure 7),
we can see that the atomic representation obtained from the atom-wise layer is sent
through the cfconv layer and then a couple of atom-wise layers with a shifted softplus
(ln(0.5ex +0.5)) non-linear layer in between them. The use of shifted softplus layers
ensures the energy predictions of the model to be smooth. Finally, the initial atomic
representation (input to interaction block) is added to the output of the interaction block
which is inspired by ResNet [34] as shown below.

xl+1
i = xl

i +vl
i

Varying Interaction block architecture
ResNet is a CNN architecture which achieved the state of the art performance on image
classification tasks. The trait that separates ResNet from other popular CNN architec-
tures is "skip connections". Skip connections address the problem of vanishing gradient
in training deep neural networks. As the gradient is back-propagated in a neural net-
work while training, repeated multiplication makes the gradient infinitely small. So
the weights in the initial layers do not get updated. ResNet deals with this problem by
having identity connections that skip one or more layers as shown in Figure 8.

We can see from Figure 8 that ReLU activation is applied to the immediate input
(F(x)) before adding to x but not in the case of SchNet (ReLU is not applied to vi).
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Figure 8: ResNet skip connections

Hence we modified the equation in SchNet accordingly to add ReLU activation. This
produced better results in our case.

xl+1
i = xl

i +ReLU(vl
i)

4. Filter Generating network
Filter Generating network defines the interaction between the atoms in the interaction
module i.e W l in the equation. A fully connected neural network is used as a filter gen-
erating network which takes the distance between the atoms (obtained by computing
the absolute difference between their positions) as input.
4.1 Ensuring Rotational variance
As mentioned before, the model should learn representations that are rotational and
translational invariant. This is achieved by using inter-atomic pairwise distance func-
tion shown below.

di j =
∥∥ri− r j

∥∥
One drawback of this type of filters is that they become highly correlated and may learn
almost the same features during training. To resolve this, the distances are expanded
using Gaussian basis functions as shown below.

ek
(
r j− ri

)
= exp

(
−γ
(∥∥r j− ri

∥∥−µk
)2
)

Here µk represents the mean of the Gaussian k. γ and the number of Gaussians (con-
figurable parameters) define the resolution of the filter. Higher values indicate larger
resolution of the filter. These expanded distances are then passed to the dense layers
with a shifted softplus layer in between to obtain the value W (ri− r j) (as shown in
Figure 7 right).
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Figure 9 shows the 2-dimensional cuts of the SchNet learned filters for all the 3 interac-
tions blocks during training on ethanol molecular dynamics trajectory. The color ’blue’
indicates negative and ’red’ indicates positive values respectively. We can see that each
filter focused on learning particular range of inter-atomic distances. These interaction
blocks in sequence (through filters) learn complex representations that will assist the
model in making better predictions.

Figure 9: Learned kernel values in interaction blocks

3.2.2 GraphConvNets (GCN)
As mentioned before, the equation in 5 relates the filtering mechanism in the spectral
and the spatial domain. When the filter is of K-order polynomial ĥ(λl) = ∑

K
k=0 akλk

l
for some constants {ak}k=0,1,...,K , the resulting filtered output for a node i in the spatial
domain is given by

fout(i) =
N

∑
j=1

fin( j)
K

∑
k=0

ak

(
∆

k
)

i, j

If we further constrain that
(
∆k)

i, j = 0 when the shortest path between the vertices i
and j is greater than k and also assume that the spectral filter is of K-order polynomial,
we can observe from the above equation that it is K-hop localized in the spatial domain.
The following derivation of the GCN convolution expression is a revised version of the
derivation provided in [4]
Defferrard et al.[16] used this property and created a convolution kernel of polynomial
parametrization. Each element of the filter matrix is of the form as shown below.

ĥ(λi) =
r−1

∑
j=0

α jλ
j
i , i = 1, . . . ,n

The matrix form of the filter is given by

ĥ(Λ) =

 ∑
r−1
j=0 α jλ

j
1 · · · 0

... . . . ...
0 · · · ∑

r−1
j=0 α jλ

j
n


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Convolution Layer The convolution of the filter with fl is given by

ξ

(
p

∑
l

φĥ(Λ)φ>fl

)

where {fl : fl ∈ Rn}l=1,...,p represents the p-dimensional input signal (equivalent to 3-
dimensional image input for CNN) and ξ is a non-linear function We can see that the
computational complexity of this filter is quite high because of the multiplication with
the forward and inverse Fourier transformation matrices φ and φ>. One possible solu-
tion is to write ĥ(Λ) as a polynomial function that can be recursively computed from
the previous values. Chebyshev polynomial [35] can be used as the higher-order poly-
nomials as they are computed iteratively from the lower order ones.

Chebyshev polynomial The Chebyshev polynomial is defined according to the be-
low equation

T0(x) = 1
T1(x) = x

Tn+1(x) = 2xTn(x)−Tn−1(x)

Defferrard et al.[16] used the Chebyshev polynomials to define a convolution filter as
shown below.

ĥ(Λ) =
r−1

∑
j=0

α jTj(Λ̂)

Here
{

α j
}

j=0,...,r−1 are the coefficients of the polynomial, Λ̂ = 2Λ/λmax− I. We know
from 2.2.2 that eigenvalues of the normalized graph laplacian lie in [0,2]. Hence it is
clear that the eigenvalues of the Λ̂ = 2Λ/λmax− I lie in [−1,1].
The convolution operation is then defined as below.

ξ

(
p

∑
l

Φ

r−1

∑
j=0

α jTj(Λ̂)Φ
>fl

)

This can be rewritten as

= ξ

(
p

∑
l

r−1

∑
j=0

α jTj(∆̂)fl

)

= ξ

(
p

∑
l

r−1

∑
j=0

α jF j,l

)
where F j,l = Tj(∆̂)fl ∈ Rn. Now we can see how to utilize the recurrence relation to
rewrite the filter. If F0,l = fl and F1,l = ∆̂fl , then for any j, l the Chebyshev recurrence
relation can be used to compute the value F j,l as shown below.

F j,l = 2∆̂F j−1,l−F j−2,l
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In GraphConvNets, the filter is further simplified by considering Chebyshev polyno-
mials until order 2. Also, we know that λmax = 2 since normalized graph Laplacian is
used. Using these new constraints, the convolution equation can be simplified as shown
below.

ξ

(
∑

p
l=1 ∑

r−1
j=0 α jTj(∆̂) fl

)
ξ

(
∑

p
l=1 ∑

r−1
j=0 α jTj (2∆/λmax− I) fl

)
ξ

(
∑

p
l=1 ∑

2−1
j=0 α jTj(2∆/2− I) fl

)
ξ
(
∑

p
l=1 α0T0(∆− I) fl +α1T1(∆− I) fl

)
ξ
(
∑

p
l=1 α0I fl +α1(∆− I) fl

)
ξ

(
∑

p
l=1 α0I fl +α1

((
I−D−1/2WD−1/2

)
− I
)

fl

)
ξ

(
∑

p
l=1 α0I fl−α1

(
D−1/2WD−1/2

)
fl

)
The reason for considering the order of the Chebyshev polynomial as 2 is to reduce
over-fitting in the convolution operation. This can happen for graphs with large node
degree. Furthermore, Kipf and Welling [17] added an extra constraint α = α0 = −α1
to reduce over-fitting and also to reduce the number of computations per layer. Now
the equation can be simplified as follows

= ξ

(
∑

p
l=1 α0I fl−α1

(
D−1/2WD−1/2

)
fl

)
= ξ

(
∑

p
l=1 αI fl +α

(
D−1/2WD−1/2

)
fl

)
= ξ

(
∑

p
l=1 α

(
I +D−1/2WD−1/2

)
fl

)
Since the eigenvalues of the normalized graph laplacian lie in the range [0,2], repeated
application of this operator (when the networks go deep) can result in numerical insta-
bility. So Kipf and Welling [17] further normalized the above equation to

ξ

(
p

∑
l

αD̃−1/2W̃D̃−1/2fl

)
l = 1, . . . , p; l′ = 1, . . . ,q

where
W̃ = W+ I and D̃ = ∑

j
W̃i j

3.2.3 Message Passing Neural Networks (MPNN)
All the existing popular graph neural networks like GCN, DTNN (Deep Tensor Neural
Networks) can be explained using a framework called Message Passing Neural Net-
works (MPNNs) according to [9]. As there are a large number of GNN algorithms,
explaining them under this common framework will help us to gain a deeper under-
standing of these models and possibly modify them to achieve better results. Let G be a
directed graph with node features xv and edge features evw between the nodes v and w.
The forward pass in this framework has two stages namely "message passing stage" and
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a "readout stage". In "message passing stage" which runs for T time steps, the message
mt+1

v at time step ’t+1’ for a node ’v’ is computed based on it’s hidden representation
ht

v and also the hidden representation of it’s neighbours ht
w as shown below.

mt+1
v = ∑

w∈N(v)
Mt
(
ht

v,h
t
w,evw

)
Then the node representation ht+1

v for node v at time step t + 1 is updated using it’s
representation ht

v at time t and message mt+1
v as shown below.

ht+1
v =Ut

(
ht

v,m
t+1
v
)

In the readout stage, the feature vector for the whole graph is computed using some
readout function R as shown below

ŷ = R
({

hT
v | v ∈ G

})
The readout R, vertex update Ut and message functions Mt are all differentiable func-
tions updated during the training process. The constraint on the readout function is that
it must be invariant to the permutation of the node states. This is necessary to make
the MPNN model invariant to graph isomorphism. Now we will describe some of the
common graph neural networks using MPNN framework.

Convolutional Networks for Learning Molecular Fingerprints, [23]
The message function used in this model is M (hv,hw,evw) = (hw,evw) where (.,.) in-
dicates concatenation. The vertex update function is Ut

(
ht

v,m
t+1
v
)
= σ

(
Hdeg(v)

t mt+1
v

)
.

Here σ is the sigmoid function, deg(v) is the degree of the node v, HN
t is a weight ma-

trix for each time step t and N indicates degree of the vertex. The readout function R
is equal to f

(
∑v,t softmax(Wtht

v)
)

where f is a MLP and Wt is learned read out matrix
at time ’t’. We can also notice that the readout function has skip connections to all the
previous hidden states ht

v. However, one disadvantage of this approach is that the result-
ing message vector (mt+1

v = (∑ht
w,∑evw)) has summations separately over nodes and

edges. It does not take the correlation between the nodes and edges into consideration.

Molecular Graph Convolutions, [24]

In this model, the edge representations et
vw are updated (instead of the node represen-

tations) in the message phase i.e. M (ht
v,h

t
w,e

t
vw) = et

vw. The vertex update function is
Ut
(
ht

v,m
t+1
v
)
= ReLU

(
W1
(
α(W0ht

v) ,m
t+1
v
))

where (.,.) denotes concatenation, W1 and
W0 are weight matrices. The edge state update is performed by et+1

vw =U ′t (e
t
vw,h

t
v,h

t
w) =

α
(
W4
(
α(W2,et

vw) ,α
(
W3
(
ht

v,h
t+1
w
))))

where Wi are learned matrices.
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Deep Tensor Neural Networks, [36]

The message function is given by Mt = tanh
(
W f c ((W c f ht

w +b1
)
�
(
W d f evw +b2

)))
where W c f ,W f c,W d f are weight matrices and b1, b2 are bias vectors. The update func-
tion is Ut

(
ht

v,m
t+1
v
)
= ht

v +mt+1
v . The readout function sends the updated node rep-

resentation (hT
v ) through the Neural Network (NN) separately and sums the resulting

output over all the nodes as shown below.

R = ∑
v

NN
(
hT

v
)

GraphConvNets (GCN)
[17] proposed the below propagation rule for each layer

H l+1 = σ

(
D̃−1/2ÃD̃−1/2H lW l

)
Here Ã = A+ IN where A is the adjacency matrix for an undirected graph G. To add
self-loops to the graph, Identity matrix IN is added to A. D̃ii = ∑ j Āi j is the degree
matrix for the graph with self loops,W l is a learned weight matrix in layer ’l’, H l is
RN×D matrix where each of the N nodes have D-dimensional representation. If we
assume L = D̃−1/2ÃD̃−1/2, then the above equation can be re-written as

H l+1
(v) = σ

(
L(v)H

lW l
)
= σ

(
∑
w

LvwH l
(w)W

l
)

Converting the above row vector (H l+1
v ) into a column vector (obtained by transposing

the above equation) and relabelling it in terms of ’t’ (Ht+1
v ), then the above equation is

equivalent to
ht+1

v = σ

((
W l)T

∑w Lvwht
w

)
Now this equation can be explained using the MPNN framework where the message
function is Mt (ht

v,h
t
w) = Lvwht

w = Ãvw(deg(v)deg(w))−1/2ht
w and update function is

Ut
(
ht

v,m
t+1
v
)
= σ

(
(W t)T mt+1

v

)
SchNet
Section 3.2.1 provides a detailed explanation of the SchNet. In this section, we will try
to explain the SchNet model using the MPNN framework.
The message function in SchNet is Mt (ht

v,h
t
w) = mt

w = W t (rw− rv) and the vertex
update function is Ut

(
ht

v,m
t+1
v
)
= ∑

natoms
j=0 xt

j ◦mt+1
j . Finally, the readout function takes

the average over all the atoms R = 1
natoms

∑v(ht
v)
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Best model among the MPNN variants
[9] took GGNN (Gated Graph Neural Network) [37] as the baseline and experimented
with different variations of it on molecular datasets like QM9. The best MPNN variant
found has the below message and readout functions.
Let d denote the dimension of each node’s representation and n represent the number
of nodes in the graph. [9] implemented MPNNs on directed graphs with a separate
message channel for incoming and outgoing edges min

v and mout
v respectively. To apply

this method on an undirected graph, each edge is considered as both incoming and out-
going edge with the same label. So the size of the message channel will be double (2d)
in case of an undirected graph.
The input to the MPNN model is a set of node feature vectors xv (information about
different bonds in the molecule) and an adjacency matrix A containing the pair-wise
distance between the atoms. The initial hidden state h0

v is the atomic feature vector
xv which is padded to some large dimension d and GRU unit with weight tying (same
weight matrix across multiple time steps) is used at each time step t.

Message function
The message function from node w to node v along edge e is M (hv,hw,evw) = mwv =

A(evw)hw where A(evw) is a neural network that converts the edge vector evw to a d×d
matrix.

Readout function
The readout function used is Set2Set model from [25] as it showed better results than

other functions on QM9 dataset. Set2Set model is designed to work on sets (where
order does not matter) and is a better pooling technique than average/sum pooling. De-
tailed explanation of Set2Set is presented in 3.2.4.

3.2.4 Set2Set Pooling
Set2Set pooling is based on content-based attention. This mechanism ensures that the
final representation (vector retrieved from memory) does not change much when the
input data is shuffled. This is necessary for Set inputs where the order of input does
not matter. Particularly, for molecules, the pooling operation should be invariant to the
order of the atoms in that molecule. The architecture of the pooling method is shown
in Figure 3.2.4. We can see that there are three components namely "Read", "Process"
and "Write" blocks which are explained in detail below.
Read block: This block creates an embedding for each element xi using a neural net-
work onto a memory vector mi
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Process block: The steps in this block is shown below

qt = LSTM
(
q∗t−1

)
ei,t = f (mi,qt)

ai,t =
exp(ei,t)

∑ j exp
(
e j,t
)

rt = ∑
i

ai,tmi

q∗t = [qtrt ]

Here mi is the memory vector (the number of mi is equal to the size of the input X).
rt is read from memory and stored in qt . f returns a scalar value computed between
mi and qt . ai,t is a softmax value computed for ei,t and the LSTM is a Long Short
Term Memory cell ([38]) that takes only the previous state as input q∗t−1 (which is a
concatenation of qt and rt). t indicates the number of processing steps that are run
before sending it to the decoder for output. One can clearly see from the equation of rt
that it is invariant to the order in which the memory values (mi equivalent to xi) is given
as input.
Write block: This block contains LSTM pointer network which takes q∗T as input and
the output is a pointer to the elements in memory (mi) one at a time over t time steps.

Figure 10: Set2Set model

3.2.5 SAG pooling
SAG pooling ([39]) uses self-attention method for pooling in GNNs. Basically, the
self-attention mechanism is used to identify the nodes that should remain after pooling.
GNNs are used in the self-attention to compute the attention scores for each node.
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The reason for using GNN is that both the node features as well as the topology of
the graph information can be used for pooling. This is not the case in earlier pooling
methods where either node features or topology of the graph is considered for pooling.
The GNN used for pooling in this thesis is GNN from [17] where the self-attention
score ( Z ∈ RN×1) is computed as shown below.

Z = σ

(
D̃−

1
2 ÃD̃−

1
2 XΘatt

)
Here σ is the activation function, Ã ∈ RN×N is the adjacency matrix with self-loops,
D̃ ∈ RN×N is the degree matrix, X ∈ RN×F is the feature matrix and Θatt ∈ RF×1 is
the learnable parameter. We can see from the equation above that the SAG pooling is
using both node features (feature matrix) and the topology (adjacency matrix) of the
graph. The pooling ratio is a hyper-parameter that determines the number of nodes to
keep after the pooling method.

idx = top− rank(Z,dkNe), Zmask = Zidx

where the top rank returns the indices of the top dkNe values and zmask is the feature
attention mask. The input graph is filtered using the mask operation shown in Figure

Figure 11: SAG pooling

11.
X ′ = Xidx,:,, Xout = X ′�Zmask,Aout = Aidx,idx

Here Xidx,: is the row-wise indexed matrix, � is the elementwise product, Aidx,idx is
the row-wise, column-wise indexed adjacency matrix. Xout and Aout are the resulting
feature matrix and adjacency matrix respectively.

3.2.6 GlobalMax Pooling
This is the basic pooling method where the pooled output is obtained by taking the
maximum value among all nodes for each dimension in a graph. For a single graph Gi,
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the output is computed by
ri = maxNi

n=1xn

where node feature matrix X ∈ R(N1+...+NB)×F and Ni denotes the number of nodes
in graph Gi. The final output for a given batch of graphs is obtained by merging the
individual graph outputs.
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4 Experiments and Results
In this chapter, the experimental settings as well as the results of the experiments are de-
scribed. Detailed information on the fine-tuning of the hyper-parameters and the reason
behind choosing those values are also provided. First, the performance of the SchNet
with different possible configurations are discussed and the best SchNet model (taken as
baseline) obtained after fine-tuning the parameters is presented. Then the performance
of different GNNs models obtained after fine-tuning the parameters is compared with
the baseline model. Similar to [5], 9000 molecules are used for training, 1000 for vali-
dation and the remaining 2500 for testing in all of the experiments. The Mean Squared
Error (MSE) is used for training and the Mean Absolute Error (MAE) is used for report-
ing the loss on both validation and test sets in all of the models. Also, during training,
the epoch having the least validation loss is recorded and the corresponding loss on the
test set is reported.

4.1 SchNet
We started with an “SchNet” architecture similar to the model (from [5]) that achieved
the state of the art results on OMDB dataset (Section 3.1). The parameters of the model
are shown in Table 2.

Table 2: SchNet configuration from [5]

Parameter Value
Interaction blocks 3

Atomic embedding size 64
Cutoff radius 5A
learning rate 0.001
decay factor 0.6

optimizer Adam
batch size 32

The mean squared error (MSE shown as loss[eV] on Y-axis) measured with respect
to time for both training and validation sets is shown in left pane of Figure 12. The
mean absolute error (MAE) with respect to time for validation set is shown in right
pane of the Figure 12. We can see that the validation curve is not smooth and has
lot of spikes. The model that achieved the lowest validation error (during training)is
chosen as the final model and the error on the test set is reported using this model. The
MAE of the model on the test set is 0.51eV. This is worse than the model with similar
configuration from [5] which achieved a much lower MAE of 0.415eV.
We also have gone through the preprint version ([6]) of the paper ([5]) submitted in

2018. In this preprint version, a slightly different architecture of SchNet was reported
to have achieved an MAE of 0.378eV on the test set. The architecture of the model
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Figure 12: Training (MSE) and Validation (MSE (left) and MAE (right) Loss of model
from [5]

is shown in Table 3. We trained a model with the similar configuration but there was
no improvement in the accuracy on the test set. We then chose to increase the number

Table 3: SchNet configuration from [6]

Parameter Value
Interaction blocks 3

Atomic embedding size 64
Cutoff radius 5A

learning rate(η) 0.001
decay factor η* 0.96 i/10000(i denotes training step)

optimizer Adam
batch size 32

of interaction blocks to 6, atomic embedding size to 128. As the molecules are quite
complex, increasing these values might capture better representations of atoms (with
respect to it’s neighbours) and this can result in lower MAE on the validation set. In
this new setting, the training starts with a learning rate of 0.001 which is reduced by
a factor of 0.8 (until a value of 1e− 6) after 25 epochs if there is no improvement
in the validation loss. The other parameters are shown in Table 4. We also slightly
changed the interaction module in SchNet as mentioned in section 3.2.1. The MAE
of this model on both the training and validation sets are shown in Figure 13. We can
clearly see that the validation curve is quite smooth now and the MAE is much lower
than the previous models. This is the best SchNet configuration we found that achieved
an MAE of 0.28eV on the test set.
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Table 4: Best performing SchNet model

Parameter Value
Interaction blocks 6

Atomic embedding size 128
starting learning rate 0.001

decay factor 0.8
Cutoff radius 5A

optimizer Adam
batch size 16

Figure 13: Training (MSE) and Validation (MSE (left) and MAE (Right)) Loss:Best
model

4.1.1 Effect of different parameters
We will vary the number of interaction blocks and the size of atomic embeddings sep-
arately and study their impact on the performance of the model. The MAE loss on the
test set for different number of interaction blocks and sizes of atomic embeddings are
shown in Figures 14a and 14b respectively.

For both the interaction blocks and atomic embedding parameters, we can see that
the loss on the test set reduced with increase in the parameter value.

4.2 NNCONV with Set2Set pooling
In this section, the results of the MPNN (NNCONV) with set2set pooling are dis-
cussed. The architecture of the model with the best performance on the validation set
is shown in Figure 15. The input graph is initially passed through a linear layer of size
32 followed by ReLU activation layer. Then there is a set (NNCONV layer with 64
filters, ReLU and Gated Recurrent Unit (GRU)) of modules which computes the mes-
sage function (mentioned in Section 3.2.3). There are 8 such modules (equivalent to 8
time steps) in sequence followed by set2set pooling (equivalent to readout function as
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(a) Interaction Blocks vs test MAE Loss (eV) (b) Atomic embeddings vs test MAE Loss (eV)

Figure 14: Effect of interaction blocks and atomic embedding parameters

Figure 15: NNCONV model with Set2Set pooling architecture

in Section 3.2.3) with sequence of steps equal to 1. Finally, there are a couple of linear
layers (64 unit and 1 unit respectively) with ReLU activation in between. The linear
unit of size 1 outputs the required bandgap value.
The parameters of the model are presented in Table 5. The learning rate is decayed by
a factor of 0.8 (before it reaches a minimum value of 1e− 6) after 25 epochs if there
is no improvement on the validation loss. The loss plot of the model on the training
(MSE), validation (MAE) and test sets (MAE) are shown in Figure 16.

Table 5: NNCONV model with Set2Set pooling parameters

Parameter Value
starting learning rate 0.001

decay factor 0.8
optimizer Adam
batch size 32

The model is trained for 500 epochs and we can see from Figure 16 that all the 3
loss curves are quite smooth throughout the training process. The loss on the training
set is reducing gradually as expected and became almost constant at the end. However,
the loss value on the validation and test sets reduced gradually before 200 epochs and
started to increase slightly later. The reason could be attributed to over-fitting on the
training set. Also, the loss value on the validation and test sets are almost the same
throughout the training process. This indicates that the model has generalized well
because the loss on unseen data (test set) is similar to the loss on the validation set.
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Figure 16: NNCONV model with Set2Set pooling results

The model reached a minimum loss value of 0.447eV on the validation set and the
corresponding test loss is 0.443eV.

4.2.1 Effect of message propagation time step t
Since NNCONV with set2set pooling achieved the best performance among all GNNs
in this thesis, we will explore the impact of time step t on this model. As mentioned
before, there are 8 sets of modules (NNCONV, ReLU, GRU) in sequence for computing
the message propagation step. The size of this module set is equivalent to time step t
and the performance of the model on the test set for different possible values of t is
shown in Table 6. The MAE loss on the test set decreased with increase in the time

Table 6: MAE loss on the test set for different values of t

t MAE loss
3 0.49
5 0.47
8 0.447

step t. As the molecules are quite complex, it seems that the message propagation step
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has to go deep (until 8 in this case). Because of this deeper message propagation, the
representation learnt for each node enabled the model to perform better on unseen data
(test set).

4.3 NNCONV with SAG pooling
In this section, we will discuss the performance of NNCONV model with SAG pooling.
We can see from the results of NNCONV (with Set2Set pooling 4.2) and GCN (4.4)
models that NNCONV achieved the best performance. This NNCONV model used the
Set2Set pooling method. Set2Set method uses only the node features for pooling but
recent approaches such as SAG also considers the structural information of the graph
which is important. More information on this can be found in Section 1.1.4. So we
decided to test the performance of this pooling method. The new model has similar
configuration as that of model in section 4.2 except the new pooling method (SAG) and
it’s architecture is shown in Figure 17. We can see from Figure 17 that the only differ-

Figure 17: NNCONV with SAG pooling architecture

ence from the architecture of NNCONV model with Set2Set pooling (15) are SAGPool
(3.2.5) and GlobalMaxPool (3.2.6) modules. The reason for using GlobalMaxPool is
that SAGPool outputs graphs of different sizes for a given batch of graphs. To make all
of the graphs have a constant size output, GlobalMax pooling is applied. Finally, the
linear layer of size 1 outputs the bandgap value of the molecule.
The model is trained for 500 epochs and the loss on the training, validation and test sets
are shown in Figure 18. We can see from the Figure 18 that the training and test loss
curves have more spikes than the NNCONV model with Set2SetPooling (see Figure
16). However, the validation and test loss curves became flat after 300 epochs. This
wasn’t the case when Set2Set pooling was employed (Section 4.2) where the validation
and test loss values started to increase again after 200 epochs. The minimum loss of the
model on the validation set during the training process is 0.471eV and the correspond-
ing test loss is 0.485eV. Therefore, we can conclude that the performance of NNCONV
model with Set2Set pooling is slightly better than SAG pooling as the loss on the test
set is comparatively lower in the former case.

4.4 GCN
We experimented with different architectures and parameters of the GCN model. In
this section, we will present the architecture as well as the results of the GCN model
that achieved the best performance on the OMDB dataset. The architecture of the GCN
model is shown in Figure 19. The model has 3 GCN convolution layers (having 256,
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Figure 18: NNCONV with SAG pooling loss

Figure 19: GCN model architecture

128 and 32 filters respectively) at the start with a ReLU activation after the first layer.
Then a set2set pooling (with the sequence of steps=1) is applied to the resulting output.
This is the only place in the model where the pooling is applied. Then there is a set of 4
linear layers with 256, 128 and 32 neurons respectively. A ReLU activation is applied
to the output after the first linear layer. The training starts with a learning rate of 0.001
which is reduced by a factor of 0.8 (until a value of 1e−6) after 25 epochs without an
improvement in the validation loss. The rest of the hyper-parameters of the model are
shown in Table 7.
The model is trained for 500 epochs and plot of the MSE loss on training, MAE loss

on the validation and test sets are shown in Figure 20. We can see that the loss on the
test dataset has more oscillations than the rest until 250 epochs and then became quite
smooth. The validation and test loss curves are quite close to each other throughout the
training process. The loss on the training set is steadily decreasing up to 400 epochs
and remains almost unchanged later. However, it can be seen that the validation and
test loss curves became almost flat earlier than the training set (from 300 epochs). The
model achieved a least validation loss of 0.566eV and the corresponding test loss value
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Table 7: GCN model parameters

Parameter Value
starting learning rate 0.001

decay factor 0.8
optimizer Adam
batch size 32

Figure 20: GCN model loss (MSE)

is 0.594eV. Hence this model has the worst performance among all the models we
tested.

4.5 An ensemble of SchNet models
In general, Neural Networks have high variance and may produce different results each
time they are trained. To reduce this variance, one possible solution is to combine the
predictions from different models. Combining the predictions from multiple models
increase the overall bias which in turn reduce the variance. This is called "Ensem-
ble Learning". We built an ensemble of 3 SchNet models and examined the resulting
model’s performance on the test set. The final output/prediction of the combined model
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is the average of the individual model predictions. The MAE loss of the ensemble
model on the test set is 0.268eV.
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5 Discussion
In this chapter, we will answer the research questions posed earlier based on the knowl-
edge gained from the results of the experiments. Also, at the very end, we will provide
possible directions for future work to achieve better results.

5.1 Answers to research questions

5.1.1 Experimenting with different architectures, parameter val-
ues of the SchNet model (which is the baseline method) and
finding the model with the lowest MAE

The results of SchNet with different architectures and parameter values are presented
in Section 4.1. The reason for choosing SchNet is that it was one of the methods
that achieved the state of the art results on molecule datasets. Also, this was the only
DNN model tested on OMDB dataset. As mentioned in Section 4.1, we started with
the SchNet setting reported in [5] that produced the state of the art results. However,
we achieved better than the state of the art results using a different configuration and
slightly modified architecture of SchNet. We also observed that the SchNet model con-
verged to the lowest MAE in the least number of epochs (less than 100) than other GNN
models tested in our thesis. Hence, the training of SchNet is much faster compared to
other GNN models.

5.1.2 Experimenting with the state of the art methods in GNNs
(both spectral and spatial domains) and finding the model
with the lowest MAE

As stated in the Introduction section 1.1, the GNNs can be classified into spectral and
spatial approaches. In this thesis, we chose the state of the art methods in each of
these approaches namely GCN, NNCONV and analyzed their performance on OMDB
dataset. The results of these methods are presented in Sections 4.4 and 4.2 respectively.
we observed that both of the models are learning from the training data. As a con-
sequence, the loss on the test set (generalization loss) was gradually decreasing along
with the validation loss before reaching a certain value. Among these two methods,
NNCONV had a much better performance (MAE 0.44eV) on the test set than GCN
(MAE 0.59eV). Hence we can conclude that the spatial approach performed much bet-
ter than the spectral approach on the OMDB dataset.
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5.1.3 Experimenting with different pooling methods that are cur-
rently available for GNNs and finding the pooling method
that gives the best results

In this thesis, we experimented with primitive pooling methods (mean/max) and also
advanced pooling methods that are designed to work on graphs. As mentioned in Sec-
tion 1.1.4, the pooling methods designed for graphs can be classified into "methods that
work based only on node features" (set2set pooling) and "methods that consider struc-
tural information of the graph along with node features" (SAG pooling). The results
of NNCONV with the same configuration but with different pooling methods Set2Set
pooling and SAG pooling are reported in Sections 4.2 and 4.3 respectively. Ideally, the
model with SAG pooling should perform better than the model with Set2Set pooling.
The reason is that SAG pooling includes necessary information such as the topology
of the graph for pooling. Contrary to our expectations, the model with set2set pooling
demonstrated better performance.

5.1.4 Finding the model or an ensemble of models with the best
performance while being computationally optimal

We can clearly see that SchNet performed significantly better than all of the other mod-
els on OMDB dataset. Our configuration of SchNet surpassed the state of the art results
(reported in [5]) on OMDB dataset. However, it is known that DNN models have high
invariance. This means that the same model may not produce similar results when
trained multiple times as they are sensitive to the specifics of the training process (for
instance, random weight initialization). Hence we trained multiple SchNet models with
the same configuration and made an ensemble of these models. The final output of this
ensemble model is the average of predictions made by each of these individual models.
The final MAE loss of the ensemble model on the test set is 0.268eV which is less than
the MAE loss of the individual models.

5.1.5 Interpreting the results of the best model and identifying the
atoms that are significant in contributing to the bandgap value
of the molecule

Deep learning (DL) models are considered as "black box" models as we cannot explain
why the DL model arrived at a particular solution. "Explainable AI" is an unsolved
problem and is currently an active area of research. Multiple methods have been devel-
oped in trying to explain the predictions of the DL models but there is no one superior
method that works in all of the cases. More details on the current explainable AI tech-
niques can be found in [40]. As GNNs are advanced DL models and a new research
field, there are a few explainable AI techniques that work on these GNN models. [41] is
one of the papers that discusses the extension of DL explainability methods to GNNs.
In this thesis, we also attempted to explain the results produced by SchNet (as this is
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the best performing model). For a given molecule, SchNet predicts bandgap value for
each of the atoms. The final output of the molecule is the average over the predictions
of the individual atoms. More information on SchNet can be found in Section 3.2.1.
In our explainability method, the atoms for which the bandgap values lie within one
standard deviation of the molecule bandgap value are considered significant. We then
used the GraphViz [42] software to plot the molecule as a graph where atoms are de-
scribed using nodes and an edge indicates a bond between the atoms. Atoms (nodes)
that are found to be significant will have orange as background colour and white oth-
erwise. A part of a molecule C9H14N2O2 (showing the entire molecule is unreadable
as it is quite complex) using our explainability method is shown in Figure 21. The
atoms shown in this Figure are C (carbon) and N (Nitrogen) and the only atom that is
found to be significant in this region is the carbon (C) atom present at the bottom-left.
More information (SMILES and other properties) on this molecule can be found in
"http://www.crystallography.net/cod/4505309.html".

Figure 21: Part of Molecule (C9H14N2O2) with significant atoms (orange coloured
nodes)

5.2 Future work
From the results (Section 4), we can infer that GNNs (both spectral and spatial ap-
proaches) can be applied to molecular datasets. Even though the performance of GNNs
is poor than SchNet in case of OMDB dataset, we cannot conclude that SchNet is al-
ways superior. It would be interesting to see the performance of these methods on
different molecule datasets. Also, the size of the OMDB dataset does not appear to be
large enough to arrive at any conclusion. CNNs (like ResNet that achieved the state of
the art results on image classification tasks) were trained on ImageNet dataset which
had around 14 million images. In our case, the OMDB dataset contains only 12500
graphs (molecules). We can increase the size of the dataset by adding new molecules
either manually or through data augmentation (using Generative Adversarial Networks
(GANs) [43]). However, generating molecules (graphs) through GANs is still in the
early stages of research. Also, we were not able to extend the number of interaction
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modules beyond 6 when testing SchNet due to the GPU limitations. In the future, we
would like to investigate the accuracy of SchNet model for larger interaction modules
and representation embeddings. One possible disadvantage of SchNet is that it is less
flexible compared to GNNs. Of course, there are certain parameters which we can con-
figure but it is clear from the SchNet architecture (shown in Figure 7) that it has a certain
defined structure. Finally, we would like to mention that GNNs is a fast-growing re-
search field. A new GNN model called DimeNet [44] that demonstrated the state of the
art results on molecule datasets was published recently. It would be interesting to see
the performance of this model on the OMDB dataset. Although the GNN approaches
that were tried did not improve the estimation accuracy, they still hold a promise in
terms of improved explainability of results due to the graph-based nature of molecules.

48



References
[1] Sumit Saha. A comprehensive guide to convolutional neural networks — the eli5

way. https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53, 2018.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[3] Stanford. Cs231n convolutional neural networks for visual recognition. https:
//cs231n.github.io/convolutional-networks, 2014.

[4] Shunwang Gong. Geometric Deep Learning. PhD thesis, Imperial College Lon-
don, 2018.

[5] Bart Olsthoorn, R Matthias Geilhufe, Stanislav S Borysov, and Alexander V Bal-
atsky. Band gap prediction for large organic crystal structures with machine learn-
ing. Advanced Quantum Technologies, 2(7-8):1900023, 2019.

[6] Bart Olsthoorn, R Matthias Geilhufe, Stanislav S Borysov, and Alexander V Bal-
atsky. Band gap prediction for large organic crystal structures with machine learn-
ing. arXiv preprint arXiv:1810.12814, 2018.

[7] Garrett B Goh, Nathan O Hodas, and Abhinav Vishnu. Deep learning for compu-
tational chemistry. Journal of computational chemistry, 38(16):1291–1307, 2017.

[8] Sandip De, Albert P Bartók, Gábor Csányi, and Michele Ceriotti. Comparing
molecules and solids across structural and alchemical space. Physical Chemistry
Chemical Physics, 18(20):13754–13769, 2016.

[9] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212, 2017.

[10] Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and
K-R Müller. Schnet–a deep learning architecture for molecules and materials. The
Journal of Chemical Physics, 148(24):241722, 2018.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

[12] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, 2017.

49

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://cs231n.github.io/convolutional-networks
https://cs231n.github.io/convolutional-networks


[13] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with Py-
Torch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[14] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013.

[15] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on
graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

[16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems, pages 3844–3852, 2016.

[17] Thomas N Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. arXiv preprint arXiv:1609.02907, 2016.

[18] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst.
Geodesic convolutional neural networks on riemannian manifolds. In Proceedings
of the IEEE international conference on computer vision workshops, pages 37–45,
2015.

[19] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein.
Learning shape correspondence with anisotropic convolutional neural networks.
In Advances in Neural Information Processing Systems, pages 3189–3197, 2016.

[20] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svo-
boda, and Michael M Bronstein. Geometric deep learning on graphs and man-
ifolds using mixture model cnns. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[21] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn:
Fast geometric deep learning with continuous b-spline kernels. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 869–
877, 2018.
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