
Robotics for Artificial Intelligence – KIMROB03
ALICE - A Domestic Service Robot

Group n. 07 — Sudhakaran Jain and Avinash Pathapati

Abstract— The main goal of our work is that when the
domestic service robot named Alice receives an order containing
objects and their corresponding locations, it should successfully
navigate to those locations and identify if those objects in the
order are present at those corresponding locations. Then it
should be able to pick those identified objects and place them
on it’s basket. Finally, once it has picked up all the objects, it
should return to the drop-off location.

The main achievement of our work is that Alice was able to
navigate successfully to the given locations,recognized objects
properly to some extent in those locations and grasps the
identified objects and places them on it’s basket. As Object
recognition system is not perfect, Alice some times makes errors
in recognizing objects and tries to grasp wrong objects.

I. INTRODUCTION

Domestic service robots can assist human beings in doing
repetitive and dangerous tasks in their daily life tasks. One
of those mundane task might be taking a medicine. To
accomplish it the person has to look and then take the
medicine himself. What if a domestic service robot exists
which can successfully identify the requested object and can
return it to the location of the person himself! This would
save a lot of time and effort for humans. Our work is focused
on solving such tasks. To accomplish these tasks we need to
perform the below sub tasks and a domestic service robot
named Alice was used to implement it.

• Navigation: Alice should be able to successfully nav-
igate to the location after finding a shortest optimal
path containing no obstacles on its way. Here we used
Dijkstra’s algorithm [1] to calculate the optimal path.

• Object Recognition: Once the goal is reached, Alice
should be able to successfully identify the target object
and also predict the position and orientation of that
object. A Convolutional Neural Network(CNN) was
trained and used for identifying the object and another
pre-trained neural network is used for finding the ori-
entation.

• Grasping: Using the predicted position and orientation,
Alice should be able to grasp the object properly so that
the object does not fall down from it’s fingers and put
it on it’s basket.

In final demo, Alice needs to collect orders in a warehouse
for someone’s shopping list. There will be five different types
of objects namely Base Tech, Tomato Soup, Eraser Box,USB
Hub and Ever green. These objects can be present at any
of the two tables present in the Warehouse. An order of

The authors are with Faculty of Science and En-
gineering, University of Gronignen, The Netherlands.
{s.j.jain,a.pathapati}@student.rug.nl

items which contains the list of objects to be picked and
their corresponding locations is sent to Alice. As soon as
Alice receives the order, it should be able to navigate to
each table and pick all the objects if they are present in the
order list for that particular table and put them in it’s basket.
Finally, Alice should be able to successfully navigate to the
drop-off location where a human worker will collect those
items from the basket.

We will start by presenting our methods in detail which
we used to solve this task. Later, we will see the results
of the experiment when our approach is tested both in
simulation and on Alice. Lastly, we will discuss and conclude
on the reasons for the observed results followed by possible
approaches which can further improve the results obtained.

II. METHOD

The robot Alice has various sensors attached to it which
mainly includes:

• Laser: It is used by Alice to create the cost-map of
its surroundings. All the obstacles present nearby are
recorded in this map, hence the name cost-map.

• Front/back camera: It is used to see the objects present
near Alice.

• Wheel encoders: It is used to measure odometric data
to estimate the current position of Alice.

• Robotic arm: It is used to grasp an object from a location
and put in the basket.

Figure 1 shows how Alice looks.

Fig. 1. Domestic Service Robot Alice.



The whole implementation was done using ROS (Robotic
Operating System) [7] and programmed in Python. Gazebo
was used for 3D simulated environment and Rviz was
used to visualize what Alice sees. As mentioned earlier to
successfully accomplish the task, Alice has to perform three
sub tasks which are explained in detail below.

A. Navigation

To navigate successfully to a goal node, Alice follows
the path given by a ’global planner’. The global planner
contains the main algorithm needed for calculating the
shortest optimal path having no obstacles to reach the goal.
But, this Global planner requires a global cost-map of the
environment to calculate the best route. So a global cost-
map was created by making the robot roam in simulated
environment while the laser sensor records all the obstacles
nearby assigning some cost value to each region in the map.
In our case if a particular cell doesn’t contain any obstacle,the
cost value of that cell is zero. Using this cost-map, the global
planner generates a path with minimum cost from source to
destination. Our aim was to keep the main algorithm of the
global planner as simple as possible but efficient enough to
perform well in the experiments. Hence, we chose Dijkstra’s
shortest path algorithm as it met the above mentioned criteria.

We now briefly explore how Dijkstra’s shortest path algo-
rithm works:

1) Mark all the cells in the grid map as unvisited and
create a set which contains all these unvisited cells.

2) Assign tentative distance as zero to the source and
Infinity to all the other cells in the grid and set the
source cell as the current cell.

3) For the current cell we fetch all the neighbouring
cells which doesn’t contain any obstacles in the grid
map and compute the distance to those cells from the
current cell. If the computed distance is less than the
assigned distance for a given cell, we replace it with
the computed distance and make the current cell as
parent for that corresponding cell.

4) Mark the current cell as visited by popping it out from
unvisited set. If the destination cell is visited or if there
is no path from the current cell to destination cell, then
the loop stops.

5) If not, select the unvisited node with the minimum
distance and set it as the current cell. Then go back to
Step 3.

6) After the loop stops, we keep backtracking the parents
starting from destination cell till we reach the source
which ultimately gives the shortest optimal path.

The navigation also depends on one more object called
’local planner’. While navigation, the robot is liable to see
few more obstacles which may have not been present in the
global cost-map. Here is where local planner having local
cost-map comes into picture. This local cost-map contains
the current local obstacles in the near by surroundings of the
robot. This helps the robot to have better knowledge about its
surroundings and trace a path to the goal without colliding
with obstacles.

To further ease out the navigation for Alice we also
provided intermediate waypoints. So using these waypoints
as the intermediate nodes Alice navigates to the goal. While
setting up waypoints we realised that objects can be present
on both the end of ’Table2’. So we provided two different
waypoints to either side of ’Table2’. Even after this, we
still believed that there might be practical hurdles where
Alice wouldn’t be able to estimate an optimal path for
its navigation. To overcome this problem we also added a
adjusting mechanism where Alice moves back by 0.4 meters
whenever it is not able to find an optimal path to the goal.
After moving back, it again tries to find an optimal path for
the goal.

Once the final waypoint for the table present in the order
is reached, an algorithm called ’alice approach’ is invoked.
The main function of this algorithm is to check the presence
of objects in front of Alice. If any object is found, Alice will
navigate in the direction of the object. The algorithm makes
sure that Alice doesn’t collide with the table on which the
object(s) is kept and maintains a minimum distance from it.
Finally, Alice aligns itself along the orientation of the table
getting ready for object recognition.

B. Object Recognition

After Alice approaches a table, it has to recognize all the
objects present on that table. The front camera of Alice keeps
sending the ROIs (Region Of Interest) as images which can
be used to recognize the objects present in front of Alice. Our
idea was to use a Convolutional Neural Network(CNN) [2],
[3] using tensorflow [5], [6] library to recognize these
images. The architecture of a CNN is shown in Figure 2. To
train this CNN, we were initially given a dataset containing
200 images along with their dimensions for each object class
namely Base Tech, Tomato Soup, Eraser Box,USB Hub and
Ever green. But we realized that we won’t be able to achieve
good accuracy results if we train the CNN only with these
200 images for each class. Hence, we decided to do perform
data augmentation to increase the size of dataset.

• Data Augmentation: This involved scaling the images
from top, bottom, left and right by a factor of 0.2. More
images were augmented by increasing the brightness of
these scaled images by a value of 30. The final dataset
thus obtained had a around 2000 images for each class.
The Figure 3 shows how the augmented images look
like.

• Convolutional Neural Network: The input size of the
image was 32*32*3. So we decided to use two convo-
lution layers one having 32 filters of size 8*8*3 and
other layer having 64 filters of size 5*5*32. We used
’RELU’ as the activation function. Two pooling layers
were put in between these convolution layers and two
fully connected layers were appended in the end.

• Training CNN: The final augmented dataset was used
to train the CNN as well as for validation testing. The
data was fed in batches and validation testing was done
after training each batch to calculate the accuracy of our



Fig. 2. Architecture of Convolutional Neural Network.

model. We received a validation accuracy of 100% after
around 100 epochs.

• Testing CNN: Finally, we tested our CNN with the test
data which was provided in a rosbag file. Our CNN
model attained an accuracy more than 90% in this test
data.

Fig. 3. Augmented dataset

C. Grasping

Once the object recognition for all the objects in a table is
done, Alice will try to pickup objects specified in the order
from different positions of the location because if the objects
are located further than the arm could reach, it couldn’t grasp.
The grasping of the object is implemented as below

1) Move the arm(end effector) close to object
2) Open Fingers
3) Translate to object
4) Close fingers
5) Attach object to end effector
6) Translate up
Most of these functions are handled by built-in ’pick’ [4]

method. We had to provide the dimensions and orientation
of the object to be picked. As Alice would be grasping only
the objects among the five as mentioned, we hard-coded the
dimensions for all these object classes. Another pre-trained
neural network model which takes an ROI image as input and
predicts the orientation was used to obtain the orientation of
the object to be grasped. Before Alice could actually grasps

the object, it creates a plan to execute it. If Alice finds that
there is possibility of collision during planning, the execution
is not performed. To make sure that Alice won’t collide with
the object it is picking, we tried providing different positions
which vary in depth so that if at least one of them is collision
free, Alice would try to grasp at that particular depth. Once
it grasps, Alice moves it’s arm to the position of the basket
and drops the object in the basket by releasing the fingers.
The same process is done for all the objects it recognized
from the order for that particular location.

D. Behaviour

Figure 4 shows the state machine diagram for our im-
plementation. Before Alice is ready to receive an order, it
moves to the start location. Once reached, Alice state will
be ’initial’ before it receives an order. Once Alice receives
an order, the state of Alice is changed to ’sub1’ where it
will navigate to ’Table1’ first if it is present in the order.
Once Navigation is completed successfully, the state of Alice
is changed to ’sub2’. If Alice gets stuck during navigation
the state of Alice is changed to ’Adjust’ where Alice would
move 0.4 metres backwards to overcome collisions and path
tracing problems. Once ’Adjust’ is done, the state of Alice is
changed back to ’sub1’ during which it tries to navigate again
to ’Table1. This process is repeated until Alice successfully
navigates to ’Table1’ and ’alice approach’ algorithm is run.
Then the state of Alice would change to ’sub2’ where Alice
would be performing both object recognition and grasping.
So if Alice identifies any of the objects present in the order
at ’Table1’ it tries to grasp and put it in it’s basket. Once
this is done successfully, state of Alice changed to ’sub3’ and
Alice navigates to ’Table2’. Now the same process mentioned
above is repeated except that Alice moves to both ends of
’Table2’. After this step Alice finally moves back to start
location.The state of Alice goes to its ’initial’ and waits for
a new order.

Apart from this, we added a text-to-speech facility in
Alice, so that while executing various sub tasks, Alice
informs us through speech, what next move it is going to
perform.



Fig. 4. The Alice state machine.

III. EXPERIMENTS
We tested our implementation of the task in both simu-

lation and on the domestic service robot Alice. The experi-
mental setup consisted of 3 difficult orders to be completed.

1) Alice will need to pick up 1 object from a known
location. This object will be present with 1 other object
present as well. The item needs to be returned to the
drop-off point.

2) Alice will need to pick up 2 or more objects from either
table 1, table 2, or both tables. The object(s) may or
may not be there. The objects (if found) need to be
returned to the drop-off point.

3) Alice needs to clear both tables in the correct order,
so either first table 2 and then table 1 or the other way
around. The items need to be returned to the drop-off
point.

The result of execution of these orders for the three sub
tasks namely Navigation, Object Recognition and Grasping
in both simulation and real world are explained in detail
below.

A. Navigation

In both cases of experimenting in Simulation as well as in
real world, first we had to create a cost-map through which
Alice will navigate. So in case of simulation we captured
this map by moving the robot in a simulated environment
using Gazebo. In real world we used Joy Controller to move
Alice. As we were inexperienced in using a Joy Controller,
for us capturing the map in simulation was relatively easier
and faster compared to capturing it in the real world.

As the map used for simulation and real world are entirely
different, the waypoints used during navigation were also
different for both of these. So these waypoints are captured
separately in both the cases using Rviz. Figure 5 shows how
waypoints look in both the maps.

Capturing waypoints in simulation was pretty much a cake
walk. But, we found it difficult to do the same in real
world on Alice. This is because, in real world we had to
accurately check which waypoints is the best to navigate
to the respective tables. Even if the waypoints are off by a
small margin, Alice will struggle to move as it sometimes
takes a weird orientation/path than the optimal way expected
to reach the goal. In both cases of simulation and real world,
we capture the below number of waypoints.

Fig. 5. Waypoints for both the maps.

1) one waypoint for the initial position
2) one waypoint for ’table1’
3) two waypoints for ’table2’

When the order was given in simulation, we observed that
the robot moved to the respective table with ease and started
doing the next sub task. Whenever, it couldn’t find an optimal
path, it went into ’Adjust’ state moving back by 0.4 meters
and again resumed to find a path to reach the goal.

When an order was given in real world, we saw that Alice
took some more time to trace a path to the goal node. We
then realised that our waypoints in the real world map was
unfortunately not very accurate. Alice went into ’Adjust’
state more often to overcome path finding problems. This
was mainly because of two practical issues which we noticed.



Firstly, we noticed that the obstacles seen in the local cost-
map of Alice were more nearer than they were actually
present. Due to the fear of colliding, even if the obstacles
were a bit far away, Alice kept on finding different paths
to the goal till it found a path it felt that won’t collide. At
times, we also had to manually clear the local cost-map if
Alice was unable to find a path for a longer time. Secondly,
we discovered a fault in our ’Adjust’ mechanism. Whenever
Alice could not trace a path to goal, it simply went back
0.4 meters to search for a path again. But here we didn’t
take into consideration if there was an obstacle located just
behind Alice. These factors made Alice to take more time
in finding the paths to the tables.

B. Object Recognition

When we tested our network with real ROI images from
rosbag file, we got an accuracy of more than 90%. But
when we tested the same images on fully trained Google’s
Inception network, we received comparatively less accurate
results. We realised that this must be because the Google’s
Inception has been pre-trained for a higher resolution of
images and it expects extensive number of feature maps
which our low resolution(32*32*3) images cannot provide.

In simulation, after Alice approached the table, its camera
started sending the ROI images of whatever Alice sees. We
observed that the ROIs not only contained images of the
objects lying on the table, but also some images of the table
itself which were misclassified as ROIs by Alice. Because
of this, our object recognition algorithm started to run on
these images too. As a result, some faulty ROI images were
recognized as objects that were present in the order to be
grasped. Ultimately, Alice tried to grasp these objects which
were actually table edges. Moreover, ROIs from the objects
that were lying on the other side of the table were also
detected.

When the order was executed in real world, all the issues
of simulation made their presence here as well. But this time
Alice not only took faulty ROI images for classification, but
also couldn’t make a plan for grasping the objects.

C. Grasping

As mentioned before identifying and estimating the orien-
tation of the object to be picked is done using CNN and pre-
trained neural network respectively. The position and orien-
tation of the object necessary for grasping is provided using
’grasp pose’ method. For a given object multiple grasps at
different possible depths like [z,z+0.25∗(size[2]/2),z+0.5∗
(size[2]/2),z+0.75∗ (size[2]/2),z+(size[2]/2)] are made to
make sure that if one of these moves are collision-free Alice
will try that move. Here size is an array containing ’length’,
’breadth’ and ’height’ of the object. The value z is the height
of Alice’s base from the ground.
During simulation grasping didn’t work exactly the same way
each time we tested for the same scenario. Sometimes Alice
was able to identify the correct object and grasps it properly
and drop it on it’s basket. But in other cases it incorrectly
identified table edges as objects and tried to grasp them.

Because of this, it’s arm sometimes got stuck between the
table edges. Few times, it dropped the object in mid way
after grasping it.

The same issues were present even while testing in real
world. But the only difference is the arm couldn’t find any
plan to execute grasping for any of the objects.

IV. DISCUSSION / CONCLUSION

We now briefly discuss the reasons for the observed results
in the experiment we conducted.

Firstly, the waypoints defined for the real world map was
not as accurate as it was required to be. Because of this
Alice couldn’t navigate to the respective table efficiently. It
got stuck between obstacles due to which ultimately finding
an optimal path took longer time than it should require.

Secondly, to overcome the problem where Alice is unable
to find an optimal path, we introduced ’Adjust’ functionality
in our work. This ’Adjust’ functionality moves Alice 0.4
metres simply backwards and then Alice tries to navigate
once more from the new location to the goal. This eased
navigation in some cases but the scope of the functionality
is limited. The main trouble arose when there were obstacles
just behind Alice.

Also, because of some weird reasons, the obstacles in
local cost-map of Alice were observed to be closer than they
actually were.

We also observed two kinds of unwanted ROI images
during object recognition. The ones where table edges were
treated as ROI images and the other ROIs of far away objects.
Both the issues still persisted even after adding a depth factor
in our grasping mechanism.
Looking at the practical issues we faced we can propose
possible solutions for them to be implemented in future. They
are as explained below.

The ’Adjust’ functionality can be further improved by
making Alice move in the direction where no obstacles are
found and try navigating to the goal from that location. This
can be done by the using the same Dijkstra’s algorithm to
move to a nearby temporary location by referring to local
cost-map. From here, we can again compute the optimal path
to the final goal.

Due to some time contraint, we were unable to check
whether the accuracy of the waypoints in our real world map
were up to the mark or not. So, if the provided waypoints
are accurate without any obstacles in between, then we can
expect Alice navigate successfully to the destination with
ease in both simulation and real world.

The unwanted ROIs from objects far away can be
removed by referring the y-axis coordinates of those ROIs.
If the y-coordinates of the ROIs are greater than a threshold
value, then those ROIs will be filtered out. Our depth values
which we provided were unable to filter out ROIs of table
edges. But with more trials we seek find the accurate depth
values to solve this problem.



To conclude, this paper explored our whole
implementation to make a domestic robot named Alice
perform the daily tasks given to it. We explored the
differences in the results when the implementation was ran
in simulation as well as in real world. We also discussed
the practical problems we discovered during experiments
and how we seek to rectify them in future.

V. YOUTUBE VIDEO LINK

https://www.youtube.com/watch?v=rcQo
d3O4g18feature=youtu.be

REFERENCES

[1] Dijkstras shortest path algorithm
https://www.geeksforgeeks.org/dijkstras-short
est-path-algorithm-greedy-algo-7/

[2] An intuitive guide to Convolutional Neural Networks
https://medium.freecodecamp.org/an-intuitive-guide
-to-convolutional-neural-networks-260c2de0a050

[3] Convolutional Neural Network Architecture
https://www.mdpi.com/entropy/entropy-19-00242
/article deploy/html/images/entropy-19-00242-g001.png

[4] Pick and Place Tutorial
http://docs.ros.org/kinetic/api/moveit tutorials/
html/doc/pick place/pick place tutorial.html

[5] Get Started with TensorFlow
https://www.tensorflow.org/tutorials/

[6] Build a Convolutional Neural Network using Estimators
https://www.tensorflow.org/tutorials/estimators
/cnn

[7] ROS Tutorials
http://wiki.ros.org/ROS/Tutorials


