
Pokemon image generation

Lucia Baldassini (s2775468) Andreas Pentaliotis (s3667537)
Li Meng (s2651513) Avinash Pathapati (S3754715)

Deep Learning
Faculty of Science and Engineering

University of Groningen

1 Introduction
In this paper we compare two methods for generating Pokemon images, Deep Convolutional GAN (DC-
GAN) and Wasserstein GAN (WGAN). For this project we used two datasets, which will be introduced
in Section 2 of this paper. As it will be shown later, the first dataset produces poor results compared to
the second one. Section 3 and Section 4 provide an overview of the architectures used for DCGAN and
WGAN along with some of the results obtained. We conclude this paper with a short conclusion and
points of discussion.

2 Datasets
Both datasets were preprocessed using the same technique. The images were resized to 128x128 pixels
and normalized. Moreover, the images were augmented by shifting the width and the height in the range
[-0.2,0.2], by allowing random rotations in the range of 10 degrees and by allowing a random zoom in
the range [1-0.2,1+0.2]. Finally, the images were normalized in the range [-1,1].

2.1 Pokemon Generation One
The first dataset we used is the Pokemon Generation Dataset 1. It contains over 10,000 images of
First Generation Pokemon divided into 151 classes. Each class contains around 60 images of the same
Pokemon. However, after accurate inspection, we had to manually remove many images because they
poorly represented the classes (for example, they contained only noise). In the end, we were left with
40% of the original data, which turned out to be too little to obtain good results, as it will be shown
below. For this reason, we decided to train the model on a second dataset.

2.2 Mgan
The second dataset that we used is called Mgan [7] and it contains around 14,774 images of different
sizes, not divided into classes.

3 DCGAN

3.1 Overview
The deep convolutional generative adversarial network (DCGAN) was first introduced by Radford et al
[6] in 2015 and it combines the concept of generative adversarial networks [3] with convolutional neural

1https://www.kaggle.com/thedagger/pokemon-generation-one

networks. As convolutional neural networks are appropriate for dealing with images (see for example
[2]), the DCGAN was appealing for our task.

Our DCGAN implementation followed the architectural guidelines for stable DCGAN implementa-
tions provided by Radford et al [6]. Although we experimented with several hyperparameters such as
optimizer learning rate, leaky ReLU alpha parameter and number of kernels in convolutional layers we
found that, in general, the hyperparameter values mentioned in the guidelines provided the best results.
In this section, we first describe our final architecture for the generator and discriminator and then we
present the results for both datasets.

3.2 Discriminator
Our discriminator takes as input the preprocessed images of size 128x128 pixels, which are comprised
of three colour channels and have pixel values that range from -1 to 1. The input images are then passed
through a convolutional layer with 128 kernels of size 5x5. We pad each input image with zeros before
we apply the convolution operation, but we also use a stride of 2 to shrink the image height and width
while creating the feature maps. After the convolution operation, we apply batch normalization to the
feature maps and then we pass them through a leaky ReLU activation layer with an alpha of 0.2. The
leaky ReLU activation function is given by

g(x, a) = max (0, x) + amin (0, x) (1)

where, in our case, a = 0.2. This allows for gradient descent even when the input x is negative. We then
apply this pattern three more times. The only change in the pattern is the number of kernels used by the
convolutional layer. We gradually increase the kernels from 128 to 256, then to 512 and then to 1024.
Consequently the flattened feature maps are fed to a dense layer with only one unit that implements the
sigmoid activation function which is given by

sigmoid(x) =
1

1 + e−x
(2)

This is appropriate for the task of determining whether an image is real or fake because it squashes the
input x to a number between 0 and 1, and this number can be seen as the probability that the image is
real. The objective of the discriminator is to minimize the binary cross-entropy loss function using the
Adam optimizer with a learning rate of 0.0002 and a β1 of 0.5 - we keep the default values for the rest
of the parameters. As a result, it should distinguish real from fake images.

3.3 Generator
Our generator can be seen as operating in the opposite direction of the discriminator. Specifically, the
generator is given a 100-dimensional Gaussian noise vector as input. Then, the input vector is fed to a
dense layer of 161984 units, which is immediately reshaped to have dimensions 4x4x1024. We then use
fractionally strided convolutions implemented with the conv2DTranspose function provided by the
Keras library to upsample the reshaped noise gradually. The first layer after the reshaping operation
implements the transposed convolution operation with 512 kernels, while the kernel size, strides and
padding parameters are the same as in all the convolutional layers of the discriminator. The resulting
feature maps are then passed through a batch normalization layer followed by a ReLU activation layer.
The ReLU activation function is given by

R(x) = max (0, x) (3)

and allows for gradient descent only when its input x is positive. This pattern is then repeated two more
times with the kernels in each transposed convolution layer decreasing by 512 to 256, and then to 128.
After that, we use one final transposed convolution layer with 3 kernels in order to upsample the feature
maps to dimensions 128x128x3. In this layer, the kernel size, strides and padding parameters are also
kept the same as in all the convolutional layers of the discriminator. Finally, the feature maps are passed
through a layer that implements the tanh activation function that is given by

tanh (x) =
ex − e−x

ex + e−x
(4)

and squashes its input x to a number between -1 and 1, effectively generating a fake image that has the
same size and range of pixel values as the preprocessed real images. The objective of the generator is
to create fake images from noise, associate them with real labels and use them to minimize the binary
cross-entropy loss function using the Adam optimizer with the same parameter values as the ones used
by the discriminator. As a result, it should fool the discriminator into thinking that the fake images are
real.

3.4 Results
3.4.1 Pokemon Generation One dataset

We trained the model on different classes. Some examples can be seen in Figure 2. First, we started by
generating Pokemons from only one class (first row of the figure). Although we can clearly recognize
the class of the Pokemon, the images are a bit deformed so that no human would consider it as real
Pokemon images. We also generated types of Pokemon, such as water and fire Pokemon (second row of
the figure). In the last example, we see that the model generated an image with blue colors, as a water
Pokemon should look like. However, the generated image is of poor quality, the shape of the Pokemon
is not well defined and we see some blobs of colors that should not be present. Lastly, we generated
Pokemon from all classes (last row of the figure). Those are the poorest generated ones: the shapes are
again not well defined and we see blobs of colors or white areas that should not be present.

The bad quality of the images is reflected in the graphs that were generated during training. For
brevity, we only show a couple of examples, see Figure 1. In general, we see that the training process
is very unstable, as can be seen by the large amount of spikes in the plots shown. We also see that at
around 9000 epochs the training saturates, after which the algorithm does not learn anymore.

(a) Training accuracy of discrimi-
nator

(b) Training loss of discriminator (c) Training loss of generator

Figure 1: Training accuracy and loss of discriminator and training loss of generator for a sample training
interval of 12000 epochs.

Figure 2: Sample of generated images. First row: example of one-class images. Second row: examples
of generated types of Pokemon. Third row: example of generated Pokemon from all classes.

3.4.2 Mgan dataset

We also trained on the Mgan dataset without changing any hyperparameter in our DCGAN architecture.
Although we still had the unstable training issue, the results were better. In Figure 5 we can see the
training procedure for a sample run of 1460 epochs. We can see that there are some spikes in the
generator loss and the discriminator manages to outperform the generator for a brief interval between
epochs 400 and 600. However, this is not enough to prevent our generator from learning to create
decent fake images in the long run. In Figure 4, we can see a sample of 10 images that were generated at
random from the generator of epoch 1460. One drawback is that we get the same image twice. Most of
the images resemble the shape of a Pokemon despite the fact that some of them may still be considered
to be blobs.

(a) Training accuracy of discrimi-
nator

(b) Training loss of discriminator (c) Training loss of generator

Figure 3: Training accuracy and loss of discriminator and training loss of generator for a sample training
interval of 1460 epochs.

Figure 4: Sample of 10 generated images from the generator of epoch 1460.

4 WGAN

4.1 Overview
We also explored WGAN [1] on our datasets, an algorithm expected to have better learning stability than
traditional GANs. Traditional GANs have the problem that the discriminator tends to saturate. The loss
of the generator, in some cases, can be unstable or stop decreasing due to vanishing gradients. WGAN
was proposed to achieve smoother gradients using Earth-Mover (EM) distance (Wasserstein Distance)
as its cost function. EM distance is the minimum cost of transporting mass when converting two data
distributions. Applying the Kantorovich-Rubinstein duality, we get EM distance by

W (Pr,Pθ) =
1

K
sup

||f ||L≤K
Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (5)

where Pr,Pθ are data distributions, the supremum is over all the K-Lipschitz functions f : X → R

|f(x1)− f(x2)| ≤ K||x1 − x2|| (6)

K = 1 for 1-Lipschitz functions.

WGAN achieves the Lipschitz constraint ||f ||L ≤ K by simply using weight clipping. A constant
c is introduced so that wi ∈ [−c, c] for all parameters wi. Weight clipping is applied after the original
gradient descent step of the optimizer. Therefore, the algorithm is capable of achieving better perfor-
mance in terms of stability and mode collapse comparing to traditional GANs. On the other hand, the
performance of this algorithm is very sensitive to the setting of hyperparameter c [4].

4.2 Discriminator and Generator
We trained WGAN with network architectures and parameter settings similar to our DCGAN. The
weight clipping constant c is set to the suggested 0.01 and the discriminator is trained 5 times per each
generator training in an epoch as mentioned in [1].

In the discriminator, the number of kernels is set to 64, 128, 256, 512 for each convolutional layer.
We also used He’s initializer [5] for the fed dense layer, which selects samples from the truncated normal
distribution with standard deviation

√
2/fan (fan is the number of input units inside the weight tensor)

centering on 0.
In our generator, the input vector is fed to a reshaped dense layer with dimension 4x4x512 instead.

We also added an extra convolutional layer with the same kernel size, stride, padding, and with batch
normalization. The number of kernels is set to 256, 128, 64, 32 for each layer.

4.3 Results
4.3.1 Pokemon Generation One dataset

We chose a specific class from this dataset and trained our WGAN architecture with weight clipping.
Particularly, we chose Pikachu class images to train our WGAN. The generated images are shown in
Figure 5a. We can see that the generated image looks like a Pikachu but the image is not clear. They
are of poor quality compared to the ones generated by DCGAN. The reason is that some of the images
in the dataset are not related to Pikachu as shown in Figure 5b and also WGAN takes relatively very
large number of epochs to generate high quality images. WGAN with gradient penalty instead of weight
clipping can provide a slight improvement in the quality for the same number of epochs we trained but
will not be as good as the images generated in Figure 2.

(a) Pikachu Generated image (b) Incorrect Pikachu image

(c) Training loss of discriminator (d) Training loss of generator

Figure 5: Generated Images and loss functions after training for 10300 epochs

The main advantage of WGAN is loss convergence. It is clear from Figure 5c that the discriminator
loss is reduced with the increase in the number of epochs. Also, the image quality improved with the
decrease in loss. Thus, there is a correlation between the loss and the image quality which confirms
the findings in [1], unlike normal GAN. One can also see that the discriminator loss function changes
smoothly and is quite stable compared to the loss in DCGAN.

4.3.2 Mgan dataset

First, we started training the same WGAN architecture on all the images from the Mgan dataset. Since
it was taking really long for each training epoch to finish, we trained on randomly chosen 200 images
from the dataset. The generated images after 10k epochs are shown in the Figure 6. The quality of
the generated images improved a lot compared to the images in Figure 5a, but it is still worse than the
images generated in Figure 4. To get the similar quality obtained in DCGAN, the training of WGAN
has to be extended for a large number of epochs.

Figure 6: Sample of 6 generated images from the WGAN generator of epoch 5850.

(a) Discriminator loss (b) Generator loss

Figure 7: Discriminator and Generator loss WGAN-Mgan dataset

We can clearly see from Figure 7 that the discriminator loss is reduced with the increase in number
of epochs whereas the image quality improved. So there is a correlation between the loss and the image
quality in this case as well, thereby we can conclude that the training process of WGAN is quite stable
in general compared to DCGAN.

5 Conclusion and Discussion
In this paper, we show two models to generate images using GANs: DGAN and WGAN. Overall, we
think that the rather disappointing results can be attributed to mainly two factors. First, the quality of
the dataset plays an important role. When training with the second clean dataset, the results were much
better compared to the first dataset. This in turn shows how important the choice of a good dataset is
in Deep Learning. Secondly, GANs are inherently hard to train. Besides the fact that they take a long
time to train, it was very difficult to have a stable training. Very often, the training saturated even after a
couple of hundreds of epochs because the discriminator was too successful, the gradient of the generator
vanished and only noise was produced.

Regarding WGAN, there is also an algorithm Wasserstein GAN with gradient penalty (WGAN-GP)
[4], which improves the WGAN by applying gradient penalty instead of weight clipping to achieve 1-
Lipschitz constraint. The main advantage to make Lipschitz constraint close to 1 by gradient penalty
in WGAN-GP is that weight clipping introduces optimization problems when the weights are often
clipped into the maximum or minimum. Therefore, the discriminator of WGAN is considered to be
overly simplified. In our experiment, however, the training of the WGAN-GP was computationally too
expensive as it takes time to calculate the gradient penalty.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint

arXiv:1701.07875, 2017.

[2] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672–2680, 2014.

[4] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in Neural Information Processing Systems, pages
5767–5777, 2017.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[6] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 15(1):1929–1958, 2015.

[7] Y. Sher. Monster gans: create monsters for your game, 2017. https://medium.com/
@yvanscher/using-gans-to-create-monsters-for-your-game-c1a3ece2f0a0.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://medium.com/@yvanscher/using-gans-to-create-monsters-for-your-game-c1a3ece2f0a0
https://medium.com/@yvanscher/using-gans-to-create-monsters-for-your-game-c1a3ece2f0a0

	Introduction
	Datasets
	Pokemon Generation One
	Mgan

	DCGAN
	Overview
	Discriminator
	Generator
	Results
	Pokemon Generation One dataset
	Mgan dataset

	WGAN
	Overview
	Discriminator and Generator
	Results
	Pokemon Generation One dataset
	Mgan dataset

	Conclusion and Discussion

